论文标题
在K3-fibred大容量方案上,抗D3-branes的Sitter真空吸尘器
On K3-fibred LARGE Volume Scenario with de Sitter vacua from anti-D3-branes
论文作者
论文摘要
在IIB型superString型压缩的背景下,瑞士奶酪Calabi Yau(cy)Orientifolds,我们考虑通过在高度扭曲的klebanov-trassler类型的高度扭曲的喉咙的尖端引入抗D3-桥接获得的de Sitter真空。为了实现具体的全球实现,我们对Cy Trixs进行了系统的搜索,该搜索是由$ 2 <h^{1,1} <5 $造成的$ 2 <h^{1,1} <5 $,它来自Kreuzer-Skarke数据库,该数据库满足了k3 fibred且适合模量稳定的最小要求(lvs)。在这种情况下,在扫描了LVS所需的所谓对角线的K3纤维Cy三倍之后,我们意识到,我们意识到,具有抗D3-Brane Uplifting的主要具有挑战性的要求之一是找到适合的Etifientiford,可以找到适合$ D3 $ D3 $ D3 $ o3 $ o3 $ o3 $ o3 $ o3 $ o3 $ o3。在我们使用带有小$ h^{1,1} $的CY三倍的详细分析(仅限于)中,我们观察到,这些拓扑要求排除了大多数Cy几何形状,因此仅出于抗D3-桥增强的目的,只有很少有可能合适的候选者。随后,我们使用$ h^{1,1} = 4 $的明确k3纤维Cy三倍提出了一个全局模型,其中所有模量都可以始终如一地稳定在标量的最低量表中。
In the context of type IIB superstring compactifications on K3-fibred (weak) Swiss-cheese Calabi Yau (CY) orientifolds, we consider the realisation of de Sitter vacua obtained through the introduction of an anti-D3-brane at the tip of a highly warped throat of Klebanov-Strassler type. Aiming to have a concrete global realisation, we perform a systematic search for the CY threefolds with $2 < h^{1,1} < 5$ arising from the Kreuzer-Skarke database, which satisfy the minimal requirements of being K3-fibred and suitable for moduli stabilisation within the LARGE Volume Scenario (LVS). In this context, after scanning the set of K3-fibred CY threefolds with a so-called diagonal del-Pezzo divisor needed for LVS, we realise that one of the main challenging requirements for having anti-D3-brane uplifting is to find a suitable orientifold involution which can simultaneously result in a sufficient large $D3$ tadpole charge along with the presence of suitable $O3$-planes. In our detailed analysis (limited to) using the CY threefolds with small $h^{1,1}$, we observe that these topological requirements rule out most of the CY geometries leading to only few possibly suitable candidates for the purpose of anti-D3-brane uplifting. Subsequently, we present a global model using one such explicit K3-fibred CY threefold with $h^{1,1}=4$ in which all the moduli can be consistently stabilised in a de Sitter minimum of the scalar potential.