论文标题

批处理的随机神经网络,用于分布外检测

Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution Detection

论文作者

Chen, Xiongjie, Li, Yunpeng, Yang, Yongxin

论文摘要

由于其在现实世界应用程序中部署机器学习模型中的重要性,因此无法分布(OOD)检测最近受到了机器学习社区的关注。在本文中,我们通过对特征的分布进行建模,提出了一种不确定性量化方法。我们进一步结合了有效的集合机制,即批处理 - 构造批处理的随机神经网络(BE-SNN)并克服特征崩溃问题。我们将提出的BE-SNN的性能与其他最先进的方法进行了比较,并表明BE-SNN在几个OOD基准测试中产生了较高的性能,例如Two-Moons数据集,FashionMnist与MNIST数据集,FashionMnist,FashionMnist vs notmnist vs notmnist DataSet和Cifar10 vs vs vs vs svhhhhhnataset。

Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications. In this paper we propose an uncertainty quantification approach by modelling the distribution of features. We further incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble stochastic neural networks (BE-SNNs) and overcome the feature collapse problem. We compare the performance of the proposed BE-SNNs with the other state-of-the-art approaches and show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionMNIST vs NotMNIST dataset, and the CIFAR10 vs SVHN dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源