论文标题
使用超声视频的甲状腺结节识别的钥匙框指导网络
Key-frame Guided Network for Thyroid Nodule Recognition using Ultrasound Videos
论文作者
论文摘要
超声检查广泛用于甲状腺结节的临床诊断(良性/恶性肿瘤)。但是,准确性在很大程度上取决于放射科医生的经验。尽管已经研究了甲状腺结节识别的深度学习技术。当前的解决方案主要基于静态超声图像,其时间信息有限,并且与临床诊断不一致。本文提出了一种通过详尽的超声视频和钥匙框架来自动识别甲状腺结节的新方法。我们首先提出一个检测 - 定位框架,以在每个超声视频中使用典型的结节自动识别临床键框架。根据本地化的键框,我们为甲状腺结节识别开发了一个键框引导的视频分类模型。此外,我们引入了一个运动注意模块,以帮助网络关注超声视频中的重要帧,这与临床诊断一致。拟议的甲状腺结节识别框架已在临床收集的超声视频上进行了验证,这表明与其他最新方法相比,表现出色。
Ultrasound examination is widely used in the clinical diagnosis of thyroid nodules (benign/malignant). However, the accuracy relies heavily on radiologist experience. Although deep learning techniques have been investigated for thyroid nodules recognition. Current solutions are mainly based on static ultrasound images, with limited temporal information used and inconsistent with clinical diagnosis. This paper proposes a novel method for the automated recognition of thyroid nodules through an exhaustive exploration of ultrasound videos and key-frames. We first propose a detection-localization framework to automatically identify the clinical key-frame with a typical nodule in each ultrasound video. Based on the localized key-frame, we develop a key-frame guided video classification model for thyroid nodule recognition. Besides, we introduce a motion attention module to help the network focus on significant frames in an ultrasound video, which is consistent with clinical diagnosis. The proposed thyroid nodule recognition framework is validated on clinically collected ultrasound videos, demonstrating superior performance compared with other state-of-the-art methods.