论文标题

使用空间激活的自适应簇阈值可以保证使用全分辨率推断

Adaptive Cluster Thresholding with Spatial Activation Guarantees Using All-resolutions Inference

论文作者

Chen, Xu, Goeman, Jelle J., Krebs, Thijmen J. P., Meijer, Rosa J., Weeda, Wouter D.

论文摘要

空间特异性悖论阻碍了经典的簇推理。鉴于没有活性体素的无效假设,替代假设指出,簇中至少有一个活性体素。因此,群集越大,我们对群集中的激活位置的了解越少。 Rosenblatt等。 (2018年)提出了一种事后推理方法,即全分辨率推断(ARI),该方法通过估计任何大脑区域的活动素数来解决此悖论。 ARI允许用户选择任意的大脑区域,并返回每个人的真实发现比例(TDP)的同时较低的置信度界限,从而保留对家庭错误率的控制。但是,ARI并不能指导用户进入足够高的TDP区域。在本文中,我们提出了一种有效的算法,该算法输出了所有最大阈值阈值群集,为此,ARI给出了至少是所选阈值的TDP较低的置信界,对于任何不需要选择的阈值也不是先验的阈值。在线性疗法时间进行预处理步骤之后,该算法仅在其输出大小的情况下需要线性时间。我们使用两个fMRI数据集的应用程序演示了算法。对于两个数据集,我们发现了几个群集,其TDP在不到一秒钟的时间内自信地符合或超过给定的阈值。

Classical cluster inference is hampered by the spatial specificity paradox. Given the null-hypothesis of no active voxels, the alternative hypothesis states that there is at least one active voxel in a cluster. Hence, the larger the cluster the less we know about where activation in the cluster is. Rosenblatt et al. (2018) proposed a post-hoc inference method, All-resolutions Inference (ARI), that addresses this paradox by estimating the number of active voxels of any brain region. ARI allows users to choose arbitrary brain regions and returns a simultaneous lower confidence bound of the true discovery proportion (TDP) for each of them, retaining control of the family-wise error rate. ARI does not, however, guide users to regions with high enough TDP. In this paper, we propose an efficient algorithm that outputs all maximal supra-threshold clusters, for which ARI gives a TDP lower confidence bound that is at least a chosen threshold, for any number of thresholds that need not be chosen a priori nor all at once. After a preprocessing step in linearithmic time, the algorithm only takes linear time in the size of its output. We demonstrate the algorithm with an application to two fMRI datasets. For both datasets, we found several clusters whose TDP confidently meets or exceeds a given threshold in less than a second.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源