论文标题
分支过程中后代数量的近似
Approximation of the number of descendants in branching processes
论文作者
论文摘要
我们讨论了加尔顿(Galton)的后代的相对极限密度的近似值 - 瓦特森(Watson)的过程,这些过程来自karlin-mcgregor近态现象。这些近似值基于karlin-mcgregor函数和二项式系数的快速衰减傅里叶系数。近似值足够简单,并且在近似值和精确值之间表现出良好的一致性,这是通过几个数值示例证明的。
We discuss approximations of the relative limit densities of descendants in Galton--Watson processes that follow from the Karlin--McGregor near-constancy phenomena. These approximations are based on the fast exponentially decaying Fourier coefficients of Karlin--McGregor functions and the binomial coefficients. The approximations are sufficiently simple and show good agreement between approximate and exact values, which is demonstrated by several numerical examples.