论文标题

分支过程中后代数量的近似

Approximation of the number of descendants in branching processes

论文作者

Kutsenko, Anton A

论文摘要

我们讨论了加尔顿(Galton)的后代的相对极限密度的近似值 - 瓦特森(Watson)的过程,这些过程来自karlin-mcgregor近态现象。这些近似值基于karlin-mcgregor函数和二项式系数的快速衰减傅里叶系数。近似值足够简单,并且在近似值和精确值之间表现出良好的一致性,这是通过几个数值示例证明的。

We discuss approximations of the relative limit densities of descendants in Galton--Watson processes that follow from the Karlin--McGregor near-constancy phenomena. These approximations are based on the fast exponentially decaying Fourier coefficients of Karlin--McGregor functions and the binomial coefficients. The approximations are sufficiently simple and show good agreement between approximate and exact values, which is demonstrated by several numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源