论文标题

通过接收场分布匹配图缩合

Graph Condensation via Receptive Field Distribution Matching

论文作者

Liu, Mengyang, Li, Shanchuan, Chen, Xinshi, Song, Le

论文摘要

图形神经网络(GNNS)可以使用深度学习对图进行分析,并在图中捕获结构化信息的结果有希望的结果。本文着重于创建一个小图来表示原始图,以便在尺寸降低的图上训练的GNN可以做出准确的预测。我们将原始图视为接收场的分布,并旨在综合一个小图,该图形具有相似的分布。因此,我们通过接受场分布匹配(GCDM)提出图形屈服,这是通过使用最大平均差异(MMD)量化的分布匹配损耗来优化合成图来完成的。此外,我们证明了GCDM生成的合成图在评估阶段高度推广到各种模型,并且使用此框架可显着提高冷凝速度。

Graph neural networks (GNNs) enable the analysis of graphs using deep learning, with promising results in capturing structured information in graphs. This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions. We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution. Thus, we propose Graph Condesation via Receptive Field Distribution Matching (GCDM), which is accomplished by optimizing the synthetic graph through the use of a distribution matching loss quantified by maximum mean discrepancy (MMD). Additionally, we demonstrate that the synthetic graph generated by GCDM is highly generalizable to a variety of models in evaluation phase and that the condensing speed is significantly improved using this framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源