论文标题
检测推荐系统的任意订单有益特征互动
Detecting Arbitrary Order Beneficial Feature Interactions for Recommender Systems
论文作者
论文摘要
检测有益特征交互在推荐系统中至关重要,现有方法通过检查所有可能的特征交互来实现这一目标。但是,检查所有可能的高阶特征相互作用的成本是过于良好的(随着阶的增加而成倍增长)。因此,现有方法仅检测有限的顺序(例如,最多四个功能的组合)有益特征交互,这可能会错过高于限制的订单的有益特征相互作用。在本文中,我们提出了一个名为HIRS的高图神经网络模型。 HIRS是直接产生任意订单的有益特征相互作用并相应地进行建议预测的第一项工作。可以指定生成的特征交互的数量比所有可能的交互的数量小得多,因此我们的模型承认运行时间要低得多。为了实现有效的算法,我们利用了有益特征相互作用的三个特性,并提出了基于深入的Infomax的方法来指导相互作用的产生。我们的实验结果表明,就建议准确性而言,HIRS的表现优于最先进的算法。
Detecting beneficial feature interactions is essential in recommender systems, and existing approaches achieve this by examining all the possible feature interactions. However, the cost of examining all the possible higher-order feature interactions is prohibitive (exponentially growing with the order increasing). Hence existing approaches only detect limited order (e.g., combinations of up to four features) beneficial feature interactions, which may miss beneficial feature interactions with orders higher than the limitation. In this paper, we propose a hypergraph neural network based model named HIRS. HIRS is the first work that directly generates beneficial feature interactions of arbitrary orders and makes recommendation predictions accordingly. The number of generated feature interactions can be specified to be much smaller than the number of all the possible interactions and hence, our model admits a much lower running time. To achieve an effective algorithm, we exploit three properties of beneficial feature interactions, and propose deep-infomax-based methods to guide the interaction generation. Our experimental results show that HIRS outperforms state-of-the-art algorithms by up to 5% in terms of recommendation accuracy.