论文标题
基于概率非负矩阵分解的音频介绍算法
Algorithms for audio inpainting based on probabilistic nonnegative matrix factorization
论文作者
论文摘要
音频介绍,即恢复缺失或遮挡的音频信号样本的任务,通常依赖于稀疏表示或自回旋建模。在本文中,我们建议在概率框架中使用非负矩阵分解(NMF)构建频谱图。首先,我们将缺失的样品视为潜在变量,并根据我们是在时间频域还是在时间频率域中提出问题,从而得出了两种用于估计模型参数的期望最大化算法。然后,我们将缺失的样品视为参数,并通过得出交替的最小化方案来解决这个新的问题。我们评估了这些算法的潜力,以恢复音乐信号中短至中间差距的任务。实验揭示了所提出的方法的巨大收敛性,以及与最先进的音频入学技术相比,竞争性能。
Audio inpainting, i.e., the task of restoring missing or occluded audio signal samples, usually relies on sparse representations or autoregressive modeling. In this paper, we propose to structure the spectrogram with nonnegative matrix factorization (NMF) in a probabilistic framework. First, we treat the missing samples as latent variables, and derive two expectation-maximization algorithms for estimating the parameters of the model, depending on whether we formulate the problem in the time- or time-frequency domain. Then, we treat the missing samples as parameters, and we address this novel problem by deriving an alternating minimization scheme. We assess the potential of these algorithms for the task of restoring short- to middle-length gaps in music signals. Experiments reveal great convergence properties of the proposed methods, as well as competitive performance when compared to state-of-the-art audio inpainting techniques.