论文标题
在量子状态下,蓝宝石的微波介电介电损失的精确度量,每十亿个敏感性
Precision measurement of the microwave dielectric loss of sapphire in the quantum regime with parts-per-billion sensitivity
论文作者
论文摘要
已知介电损失会限制最先进的超导量子寿命。最近的实验暗示着散装电介质损失切线的上限,按$ 100 $零件的零件计算,但是由于这些推论是从具有许多损耗通道的完全制造的设备中得出的,因此它们并没有明确暗示或降低介质。为了解决这种歧义,我们设计了一种测量方法,能够分离和解决散装介电损失,灵敏度为每十亿美元的零件5美元。我们称之为介电堤坝的方法涉及将介电样品的原位插入到高质量的微波腔模式中。平稳地改变样品在腔模式中的参与,可以对样品的介电损耗切线进行差异测量。介电堤坝可以在低温温度下探测电介质的低功率行为,并且在不需要任何光刻过程的情况下这样做,从而可以对基板材料和加工技术进行受控的比较。我们通过测量EFG Sapphire演示了该方法,从中,我们从中推断出$ 62(7)\ times 10^{ - 9} $的批量损失切线,以及$ 12(2)\ times 10^{ - 4} $的基板 - 空气接口损失切线。对于典型的Transmon来说,这种批量损失切线将把设备质量因素限制在不到2.2亿美元,这表明批量损失可能是蓝宝石寿命最长的传输中的主要损失机制。我们还在Hemex Sapphire上演示了这种方法,并将其批量损失切线限制为小于$ 15(5)\ Times 10^{ - 9} $。由于该结合比EFG蓝宝石的大部分损失小约3倍,因此使用Hemex Sapphire作为底物将使典型的Transmon Qubit的批量介电相干极限提高到几毫秒。
Dielectric loss is known to limit state-of-the-art superconducting qubit lifetimes. Recent experiments imply upper bounds on bulk dielectric loss tangents on the order of $100$ parts-per-billion, but because these inferences are drawn from fully fabricated devices with many loss channels, they do not definitively implicate or exonerate the dielectric. To resolve this ambiguity, we have devised a measurement method capable of separating and resolving bulk dielectric loss with a sensitivity at the level of $5$ parts per billion. The method, which we call the dielectric dipper, involves the in-situ insertion of a dielectric sample into a high-quality microwave cavity mode. Smoothly varying the sample's participation in the cavity mode enables a differential measurement of the sample's dielectric loss tangent. The dielectric dipper can probe the low-power behavior of dielectrics at cryogenic temperatures, and does so without the need for any lithographic process, enabling controlled comparisons of substrate materials and processing techniques. We demonstrate the method with measurements of EFG sapphire, from which we infer a bulk loss tangent of $62(7) \times 10^{-9}$ and a substrate-air interface loss tangent of $12(2) \times 10^{-4}$. For a typical transmon, this bulk loss tangent would limit device quality factors to less than $20$ million, suggesting that bulk loss is likely the dominant loss mechanism in the longest-lived transmons on sapphire. We also demonstrate this method on HEMEX sapphire and bound its bulk loss tangent to be less than $15(5) \times 10^{-9}$. As this bound is about 3 times smaller than the bulk loss tangent of EFG sapphire, use of HEMEX sapphire as a substrate would lift the bulk dielectric coherence limit of a typical transmon qubit to several milliseconds.