论文标题

AI驱动的自动发现聚合物膜以捕获碳

AI powered, automated discovery of polymer membranes for carbon capture

论文作者

Giro, Ronaldo, Hsu, Hsianghan, Kishimoto, Akihiro, Hama, Toshiyuki, Neumann, Rodrigo F., Luan, Binquan, Takeda, Seiji, Hamada, Lisa, Steiner, Mathias B.

论文摘要

人工智能(AI)的分子产生有望改变材料发现。潜在应用从有效药物的开发到有效的碳捕获和分离技术。但是,现有的计算框架缺乏在Meso尺度上的自动培训数据创建和身体绩效验证,而无定形材料的复杂特性出现。迄今为止,方法差距将AI设计限制在小分子应用中。在这里,我们通过反分子设计报告了第一个自动发现复杂材料的自动发现,该材料由中尺度的目标特征和过程数字来告知。我们已经通过计算生成和验证数百名用于在燃烧后二氧化碳过滤中应用的聚合物候选者进入了新的发现制度。具体而言,我们已经通过基于图的优化单体单元的基于图的生成设计到通过聚合物膜对气体渗透的分子动力学仿真验证了从训练数据集创建的每个发现步骤。对于后者,我们设计了一个代表性的基本体积(REV),以大约1,000倍的体积,即AI生成的单体,以获得定量协议。在标准计算环境中,每个聚合物候选者的发现对验证时间为100小时,在实验室验证之前提供了计算筛选替代方案。

The generation of molecules with Artificial Intelligence (AI) is poised to revolutionize materials discovery. Potential applications range from development of potent drugs to efficient carbon capture and separation technologies. However, existing computational frameworks lack automated training data creation and physical performance validation at meso-scale where complex properties of amorphous materials emerge. The methodological gaps have so far limited AI design to small-molecule applications. Here, we report the first automated discovery of complex materials through inverse molecular design which is informed by meso-scale target features and process figures-of-merit. We have entered the new discovery regime by computationally generating and validating hundreds of polymer candidates designed for application in post-combustion carbon dioxide filtration. Specifically, we have validated each discovery step, from training dataset creation, via graph-based generative design of optimized monomer units, to molecular dynamics simulation of gas permeation through the polymer membranes. For the latter, we have devised a Representative Elementary Volume (REV) enabling permeability simulations at about 1,000x the volume of an individual, AI-generated monomer, obtaining quantitative agreement. The discovery-to-validation time per polymer candidate is on the order of 100 hours in a standard computing environment, offering a computational screening alternative prior to lab validation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源