论文标题

BigBio:以数据为中心的生物医学自然语言处理的框架

BigBIO: A Framework for Data-Centric Biomedical Natural Language Processing

论文作者

Fries, Jason Alan, Weber, Leon, Seelam, Natasha, Altay, Gabriel, Datta, Debajyoti, Garda, Samuele, Kang, Myungsun, Su, Ruisi, Kusa, Wojciech, Cahyawijaya, Samuel, Barth, Fabio, Ott, Simon, Samwald, Matthias, Bach, Stephen, Biderman, Stella, Sänger, Mario, Wang, Bo, Callahan, Alison, Periñán, Daniel León, Gigant, Théo, Haller, Patrick, Chim, Jenny, Posada, Jose David, Giorgi, John Michael, Sivaraman, Karthik Rangasai, Pàmies, Marc, Nezhurina, Marianna, Martin, Robert, Cullan, Michael, Freidank, Moritz, Dahlberg, Nathan, Mishra, Shubhanshu, Bose, Shamik, Broad, Nicholas Michio, Labrak, Yanis, Deshmukh, Shlok S, Kiblawi, Sid, Singh, Ayush, Vu, Minh Chien, Neeraj, Trishala, Golde, Jonas, del Moral, Albert Villanova, Beilharz, Benjamin

论文摘要

培训和评估语言模型越来越多地要求构建元数据 - 多样化的策划数据收集,并具有清晰的出处。自然语言提示最近通过将现有的,有监督的数据集转换为多种新颖的预处理任务,突出了元数据策划的好处,从而改善了零拍的概括。尽管将这些以数据为中心的方法转化为生物医学语言建模的通用域文本成功,但由于标记的生物医学数据集在流行的数据中心中的代表性大大不足,因此仍然具有挑战性。为了应对这一挑战,我们向BigBio介绍了一个由126多个生物医学NLP数据集的社区库,目前涵盖了12个任务类别和10多种语言。 BigBio通过对数据集及其元数据进行程序化访问来促进可再现的元数据策划,并且与当前的平台兼容,以及时工程和迅速的工程和端到端少量/零射击语言模型评估。我们讨论了我们的任务架构协调,数据审核,贡献指南的过程,并概述了两个说明性用例:生物医学提示和大规模的多任务学习的零射门评估。 BigBio是一项持续的社区努力,可在https://github.com/bigscience-workshop/biomedical上获得

Training and evaluating language models increasingly requires the construction of meta-datasets --diverse collections of curated data with clear provenance. Natural language prompting has recently lead to improved zero-shot generalization by transforming existing, supervised datasets into a diversity of novel pretraining tasks, highlighting the benefits of meta-dataset curation. While successful in general-domain text, translating these data-centric approaches to biomedical language modeling remains challenging, as labeled biomedical datasets are significantly underrepresented in popular data hubs. To address this challenge, we introduce BigBIO a community library of 126+ biomedical NLP datasets, currently covering 12 task categories and 10+ languages. BigBIO facilitates reproducible meta-dataset curation via programmatic access to datasets and their metadata, and is compatible with current platforms for prompt engineering and end-to-end few/zero shot language model evaluation. We discuss our process for task schema harmonization, data auditing, contribution guidelines, and outline two illustrative use cases: zero-shot evaluation of biomedical prompts and large-scale, multi-task learning. BigBIO is an ongoing community effort and is available at https://github.com/bigscience-workshop/biomedical

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源