论文标题

完整的恒定各向同性曲率空间的空间形式

Complete Hypersurfaces of Constant Isotropic Curvature in Space Forms

论文作者

Gururaja, H. A., Kumar, Niteesh

论文摘要

我们对空间形式的常数各向同性曲率的完全定向性曲面进行分类。我们表明,这种超表面只有在是等于等级的浮肿时才具有恒定的平均曲率,并且仅当它完全是大地的,或者它是最小的,或者它是完全大地的,或者它是clifford的最小hypersurface $ {\ mathbb s}^{3}^{3} {3}(3}( s}^{1}(4c)$ in $ {\ mathbb s}^{5}(c)。

We classify complete orientable hypersurfaces of constant isotropic curvature in space forms. We show that such a hypersurface has constant mean curvature only if it is an isoparametric hypersurface, and that it is minimal if and only if it is totally geodesic or it is the Clifford minimal hypersurface ${\mathbb S}^{3}(\frac{4c}{3})\times {\mathbb S}^{1}(4c)$ in ${\mathbb S}^{5}(c).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源