论文标题
从轨迹监测中学习全市生活模式
Learning Citywide Patterns of Life from Trajectory Monitoring
论文作者
论文摘要
现实世界中人类流动性数据集的最新扩散促进了轨迹预测,需求预测,旅行时间估计和异常检测方面的地理空间和运输研究。但是,这些数据集还可以更广泛地对复杂的人类流动系统进行描述性分析。我们正式将生命分析模式定义为在线无监督异常检测的自然,可解释的扩展,在该检测中,我们不仅监测数据流的异常情况,而且随着时间的推移会明确提取正常模式。为了学习生活的模式,我们会在需要时(GWR)从计算生物学和神经生物学研究的研究到地理空间分析的新领域增长(GWR)。与自组织图(SOM)有关的生物学启发的神经网络,随着它在GPS流上迭代时,逐渐构建了一组“记忆”或原型流量模式。然后,它将每个新观察结果与先前的经历进行比较,从而诱导了对数据的在线,无监督的聚类和异常检测。我们从Porto出租车数据集中挖掘出利益的模式,包括主要的公共假期和新发现的运输异常,例如节日和音乐会,据我们所知,这些杂志在先前的工作中尚未得到认可或报道。我们预计,在许多领域,包括智能城市,自动驾驶汽车以及城市规划和管理在内的许多领域,可以逐步学习正常和异常的道路运输行为的能力将是有用的。
The recent proliferation of real-world human mobility datasets has catalyzed geospatial and transportation research in trajectory prediction, demand forecasting, travel time estimation, and anomaly detection. However, these datasets also enable, more broadly, a descriptive analysis of intricate systems of human mobility. We formally define patterns of life analysis as a natural, explainable extension of online unsupervised anomaly detection, where we not only monitor a data stream for anomalies but also explicitly extract normal patterns over time. To learn patterns of life, we adapt Grow When Required (GWR) episodic memory from research in computational biology and neurorobotics to a new domain of geospatial analysis. This biologically-inspired neural network, related to self-organizing maps (SOM), constructs a set of "memories" or prototype traffic patterns incrementally as it iterates over the GPS stream. It then compares each new observation to its prior experiences, inducing an online, unsupervised clustering and anomaly detection on the data. We mine patterns-of-interest from the Porto taxi dataset, including both major public holidays and newly-discovered transportation anomalies, such as festivals and concerts which, to our knowledge, have not been previously acknowledged or reported in prior work. We anticipate that the capability to incrementally learn normal and abnormal road transportation behavior will be useful in many domains, including smart cities, autonomous vehicles, and urban planning and management.