论文标题
CHRSNET:使用自发指导网络进行染色体拉直
ChrSNet: Chromosome Straightening using Self-attention Guided Networks
论文作者
论文摘要
核分型是评估染色体异常可能存在的重要程序。但是,由于非刚性性质,染色体通常在微观图像中弯曲,这种变形形状阻碍了细胞遗传学家的染色体分析。在本文中,我们提出了一个自我发项的指导框架,以消除染色体的曲率。提出的框架提取空间信息和本地纹理,以在回归模块中保留带模式。借助弯曲染色体的互补信息,改进模块旨在进一步改善细节。此外,我们提出了两个专用的几何约束,以维持长度并恢复染色体的变形。为了训练我们的框架,我们创建了一个合成数据集,其中通过网格染色体从现实世界中的直染色体生成弯曲的染色体。定量和定性实验是对合成和现实世界数据进行的。实验结果表明,我们提出的方法可以有效拉直弯曲的染色体,同时保持束带细节和长度。
Karyotyping is an important procedure to assess the possible existence of chromosomal abnormalities. However, because of the non-rigid nature, chromosomes are usually heavily curved in microscopic images and such deformed shapes hinder the chromosome analysis for cytogeneticists. In this paper, we present a self-attention guided framework to erase the curvature of chromosomes. The proposed framework extracts spatial information and local textures to preserve banding patterns in a regression module. With complementary information from the bent chromosome, a refinement module is designed to further improve fine details. In addition, we propose two dedicated geometric constraints to maintain the length and restore the distortion of chromosomes. To train our framework, we create a synthetic dataset where curved chromosomes are generated from the real-world straight chromosomes by grid-deformation. Quantitative and qualitative experiments are conducted on synthetic and real-world data. Experimental results show that our proposed method can effectively straighten bent chromosomes while keeping banding details and length.