论文标题

宗旨:变压器编码网络,用于运动预测的有效时间流

TENET: Transformer Encoding Network for Effective Temporal Flow on Motion Prediction

论文作者

Wang, Yuting, Zhou, Hangning, Zhang, Zhigang, Feng, Chen, Lin, Huadong, Gao, Chaofei, Tang, Yizhi, Zhao, Zhenting, Zhang, Shiyu, Guo, Jie, Wang, Xuefeng, Xu, Ziyao, Zhang, Chi

论文摘要

该技术报告提出了一种有效的自动驾驶运动预测方法。我们开发了一种基于变压器的方法,用于输入编码和轨迹预测。此外,我们提出了时间流动头来增强轨迹编码。最后,使用了有效的K-均值集合方法。使用我们的变压器网络和集合方法,我们以1.90的最先进的Minfde得分赢得了Argoverse 2 Motion预测挑战的第一名。

This technical report presents an effective method for motion prediction in autonomous driving. We develop a Transformer-based method for input encoding and trajectory prediction. Besides, we propose the Temporal Flow Header to enhance the trajectory encoding. In the end, an efficient K-means ensemble method is used. Using our Transformer network and ensemble method, we win the first place of Argoverse 2 Motion Forecasting Challenge with the state-of-the-art brier-minFDE score of 1.90.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源