论文标题

无需网格:适应时间依赖的schrödinger方程式的自适应性高斯

No need for a grid: Adaptive fully-flexible gaussians for the time-dependent Schrödinger equation

论文作者

Kvaal, Simen, Lasser, Caroline, Pedersen, Thomas Bondo, Adamowicz, Ludwik

论文摘要

允许允许线性和非线性参数变化的复杂高斯函数的线性组合被证明提供了一种极其灵活有效的方法,可在一个空间维度中求解时间依赖性的Schrödinger方程。在dirac-frenkel变化原理的系统中,众所周知,灵活基集的使用已被证明很难。在这项工作中,我们提出了一种替代的时间传播方案,该方案逐渐强调最佳参数演化,但通过Rothe方法的方法直接靶向残留最小化,也称为垂直时间层的方法。我们使用模仿受极端激光脉冲的原子的简单模型系统测试该方案。这样的脉冲会产生系统的复杂电离动力学。该方案在此模型上表现出色,并且不依赖于计算网格。仅需要少数高斯功能才能与高分辨率,基于网格的求解器达到准确性。这为原子和分子的时间依赖性的schrödinger方程的准确解决方案铺平了道路,即诞生和超越oppenheimer近似。

Linear combinations of complex gaussian functions, where the linear and nonlinear parameters are allowed to vary, are shown to provide an extremely flexible and effective approach for solving the time-dependent Schrödinger equation in one spatial dimension. The use of flexible basis sets has been proven notoriously hard within the systematics of the Dirac--Frenkel variational principle. In this work we present an alternative time-propagation scheme that de-emphasizes optimal parameter evolution but directly targets residual minimization via the method of Rothe's method, also called the method of vertical time layers. We test the scheme using a simple model system mimicking an atom subjected to an extreme laser pulse. Such a pulse produces complicated ionization dynamics of the system. The scheme is shown to perform very well on this model and notably does not rely on a computational grid. Only a handful of gaussian functions are needed to achieve an accuracy on par with a high-resolution, grid-based solver. This paves the way for accurate and affordable solution of the time-dependent Schrödinger equation for atoms and molecules within and beyond the Born--Oppenheimer approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源