论文标题

断裂网络的离散时间演变模型

A discrete time evolution model for fracture networks

论文作者

Domokos, Gábor, Regős, Krisztina

论文摘要

我们使用凸镶嵌的平均场理论检查地球物理裂纹模式。我们为每个裂纹模式分配了平均角度度的$(\ bar n^*,\ bar v^*)$,我们定义两个本地的,随机的进化步骤$ r_0 $和$ r_1 $,分别对应于二次裂缝和裂缝的重新排列。这些步骤的随机序列导致$(\ bar n^*,\ bar v^*)$ plane上的轨迹。我们证明了几种类型的轨迹的限制点。另外,我们证明单元密度$ρ= \ bar v^*/\ bar n^*$在任何可接受的轨迹下单调增加。

We examine geophysical crack patterns using the mean field theory of convex mosaics. We assign the pair $(\bar n^*,\bar v^*)$ of average corner degrees to each crack pattern and we define two local, random evolutionary steps $R_0$ and $R_1$, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the $(\bar n^*,\bar v^*)$ plane. We prove the existence of limit points for several types of trajectories. Also, we prove that cell density $ρ= \bar v^*/\bar n^*$ increases monotonically under any admissible trajectory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源