论文标题

d维汤林尼黑洞的潮汐特性

Tidal properties of D-dimensional Tangherlini black holes

论文作者

Vandeev, V. P., Semenova, A. N.

论文摘要

本文研究了多维球形对称的空间中的潮汐力。我们考虑Schwarzschild-Tangherlini度量及其电荷类似物中的地球偏差方程。结果表明,对于径向测量学,可以在任何维度的空间中明确求解这些方程式。在五个,六个和七个维空间的情况下,这些解决方案可以用椭圆形积分来表示。对于较高维度的空间,我们发现了解决方案的渐近学。已经发现,在物理奇点,沿径向方向延伸的物理奇异性潮汐伸展越强,空间的尺寸就越大。而横向向径向方向的潮汐压缩(从一定维度开始)并没有在主要顺序上发生变化。同样,在非统治地球学的情况下,黑洞电荷的存在不会影响领先顺序的横向压缩力。对于具有非零角动量的非统治地球学,研究了奇异性附近地球偏差方程解的局部特性。

This paper investigates tidal forces in multidimensional spherically symmetric spacetimes. We consider geodesic deviation equation in Schwarzschild-Tangherlini metric and its electrically charged analog. It was shown that for radial geodesics these equations can be solved explicitly as quadratures in spaces of any dimension. In the case of five, six and seven dimensional spaces, these solutions can be represented in terms of elliptic integrals. For spacetimes of higher dimension, we find the asymptotics of the solution. It was found that in the physical singularity vicinity tidal stretch along the radial direction is the stronger the greater the dimension of space. Whereas the tidal compression in transverse to radial directions, starting from a certain dimension, does not change in the main order. Also in the case of non-radial geodesics, the presence of black hole electric charge does not affect the force of transverse compression in the leading order. For non-radial geodesics with non-zero angular momentum, the local properties of solutions of geodesic deviation equations in the vicinity of a singularity are studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源