论文标题
对比性跨模式知识共享视力表示和检索的视觉表示预训练
Contrastive Cross-Modal Knowledge Sharing Pre-training for Vision-Language Representation Learning and Retrieval
论文作者
论文摘要
最近,跨模式的预训练任务一直是一个热点,因为它在各种下流的研究中广泛应用,包括检索,字幕,问题答案等。但是,退出的方法采用了一个单流训练模型来探索进行交叉模式检索的联合视觉表示,这很容易遭受计算爆炸的损失。此外,尽管常规的双流结构非常有效,但它们仍然缺乏重要的跨模式相互作用,导致性能低。在这些挑战的推动下,我们提出了对比的跨模式知识共享预训练(Cookie),以掌握联合文本图像表示。从结构上讲,饼干由于可接受的时间消耗而采用了传统的双流结构。为了克服上述双流结构的固有缺陷,我们精心设计了两个有效的模块。具体而言,第一个模块是一个重量共享的变压器,它构建在视觉和文本编码器的头上,旨在将语义对齐文本和图像对齐。该设计使视觉和文本路径集中在相同的语义上。另一个是三个专门设计的对比学习,旨在分享不同模型之间的知识。共享的跨模式知识大大发展了单峰表示的研究,从而促进了单模式检索任务。对多模式匹配研究的广泛实验结果,包括跨模式检索,文本匹配和图像检索揭示了我们的计算效率和我们预训练模型的统计指标的上级。
Recently, the cross-modal pre-training task has been a hotspot because of its wide application in various down-streaming researches including retrieval, captioning, question answering and so on. However, exiting methods adopt a one-stream pre-training model to explore the united vision-language representation for conducting cross-modal retrieval, which easily suffer from the calculation explosion. Moreover, although the conventional double-stream structures are quite efficient, they still lack the vital cross-modal interactions, resulting in low performances. Motivated by these challenges, we put forward a Contrastive Cross-Modal Knowledge Sharing Pre-training (COOKIE) to grasp the joint text-image representations. Structurally, COOKIE adopts the traditional double-stream structure because of the acceptable time consumption. To overcome the inherent defects of double-stream structure as mentioned above, we elaborately design two effective modules. Concretely, the first module is a weight-sharing transformer that builds on the head of the visual and textual encoders, aiming to semantically align text and image. This design enables visual and textual paths focus on the same semantics. The other one is three specially designed contrastive learning, aiming to share knowledge between different models. The shared cross-modal knowledge develops the study of unimodal representation greatly, promoting the single-modal retrieval tasks. Extensive experimental results on multi-modal matching researches that includes cross-modal retrieval, text matching, and image retrieval reveal the superiors in calculation efficiency and statistical indicators of our pre-training model.