论文标题

对癌症的生物知识深度学习模型的系统评价:编码和解释肿瘤数据的基本趋势

A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data

论文作者

Wysocka, Magdalena, Wysocki, Oskar, Zufferey, Marie, Landers, Dónal, Freitas, André

论文摘要

对基于深度学习(DL)方法作为肿瘤学的支持分析框架的使用越来越兴趣。但是,DL的大多数直接应用都将提供具有有限透明度和解释性的模型,从而限制了其在生物医学设置中的部署。这项系统评价讨论了用于支持癌症生物学推断的DL模型,并特别强调多词分析。它着重于现有模型如何通过先验知识,生物学合理性和解释性以及生物医学领域的基本特性来解决更好的对话。为此,我们检索并分析了42项研究,重点是新兴的建筑和方法论进步,生物领域知识的编码以及解释性方法的整合。我们讨论了DL模型的最新进化拱门,以整合先前的生物关系和网络知识的方向,以支持更好的概括(例如途径或蛋白质 - 蛋白质相互作用网络)和解释性。这代表了向模型的基本功能转变,该模型可以整合机械和统计推断方面。我们介绍了一个以生物为中心的可解释性的概念,并根据其分类法,讨论了在此类模型中整合域先验知识的代表性方法。该论文为当代方法提供了对DL用于癌症的解释性和解释性解释的观点。分析指向编码先验知识和改善解释性之间的收敛方向。我们介绍了以生物为中心的解释性,这是朝着对DL模型的生物解释性形式化和开发特定于问题或应用特定的方法形式化的重要一步。

There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. The paper provides a critical outlook into contemporary methods for explainability and interpretabiltiy used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源