论文标题
分割引导了深HDR脱发
Segmentation Guided Deep HDR Deghosting
论文作者
论文摘要
我们提出了一种运动分割引导的卷积神经网络(CNN)方法,以进行高动态范围(HDR)图像磁化。首先,我们使用CNN在输入序列中的移动区域进行分割。然后,我们将静态区域和移动区域分别与不同的融合网络合并,并结合融合功能以生成最终的无幽灵HDR图像。我们的运动分割的HDR融合方法与现有HDR脱胶方法具有显着优势。首先,通过将输入序列分割为静态和移动区域,我们提出的方法可以为各种具有挑战性的饱和度和运动类型学习有效的融合规则。其次,我们引入了一个新颖的内存网络,该网络积累了在饱和区域中生成合理细节所需的必要功能。所提出的方法在两个公开可用的数据集上优于九种现有的最新方法,并生成视觉上令人愉悦的无幽灵HDR结果。我们还提供了3683个不同暴露图像的大规模运动细分数据集,以使研究社区受益。
We present a motion segmentation guided convolutional neural network (CNN) approach for high dynamic range (HDR) image deghosting. First, we segment the moving regions in the input sequence using a CNN. Then, we merge static and moving regions separately with different fusion networks and combine fused features to generate the final ghost-free HDR image. Our motion segmentation guided HDR fusion approach offers significant advantages over existing HDR deghosting methods. First, by segmenting the input sequence into static and moving regions, our proposed approach learns effective fusion rules for various challenging saturation and motion types. Second, we introduce a novel memory network that accumulates the necessary features required to generate plausible details in the saturated regions. The proposed method outperforms nine existing state-of-the-art methods on two publicly available datasets and generates visually pleasing ghost-free HDR results. We also present a large-scale motion segmentation dataset of 3683 varying exposure images to benefit the research community.