论文标题
无张力的弦乐的经典几何形状
Classical geometry from the tensionless string
论文作者
论文摘要
$ \ text {ads} _3 \ times \ text {s}^3 \ times \ mathcal {m {m} $上的无张力字符串理论在串线绕渐近边界的极限探索。尽管通常认为世界表格本地化为$ \ text {ads} $边界,但我们认为字符串实际上可以在此限制下探测散装几何形状。特别是,我们表明,相关函数可以用最小的区域世界表表示,以$ \ text {ads} _3 $传播。然后,我们将字符串的经典运动与无张力的世界表格理论的类似曲折的自由场描述联系起来。最后,我们考虑了$ \ text {ads} _3 $对$ \ text {ads} _2 $的特定维度减少,并表明世界表格的有效动作正式类似于具有圆锥形缺陷的一维施瓦兹(Schwarzian Jt Reverity)。
Tensionless string theory on $\text{AdS}_3\times\text{S}^3\times\mathcal{M}$ is explored in the limit that the strings wind the asymptotic boundary a large number of times. Although the worldsheet is usually thought to be localised to the $\text{AdS}$ boundary, we argue that the string can actually probe the bulk geometry in this limit. In particular, we show that correlation functions can be expressed in terms of a minimal-area worldsheet propagating in $\text{AdS}_3$. We then relate the classical motion of the string to the twistor-like free field description of the tensionless worldsheet theory. Finally, we consider a particular dimensional reduction of $\text{AdS}_3$ to $\text{AdS}_2$, and show that the effective action of the worldsheet formally resembles the one-dimensional Schwarzian theory of JT gravity with conical defects.