论文标题
基于多个项目的对比度建议
Multi-granularity Item-based Contrastive Recommendation
论文作者
论文摘要
对比度学习(CL)在推荐方面表现出了其力量。但是,大多数基于CL的建议模型都建立了其CL任务,只是关注用户的方面,而忽略了项目中丰富的多样信息。在这项工作中,我们为匹配阶段(即候选人生成)提出了一种新型的基于项目的对比度学习(MICREC)框架,该框架系统地将与CL的代表性学习系统地介绍了与CL的代表性学习。具体来说,我们构建了三个基于项目的CL任务,作为一组插件辅助目标,以捕获功能,语义和会话级别中的项目相关性。功能级项目CL旨在通过项目及其增强来学习细粒度的特征级项目相关性。语义级项目CL的重点是语义相关项目之间的粗粒语义相关性。会话级项目CL强调了所有会话中用户顺序行为的项目的全局行为相关性。在实验中,我们对现实数据集进行了离线和在线评估,从而验证了三个提出的CL任务的有效性和普遍性。目前,Micrec已部署在现实世界中的推荐系统上,影响了数百万用户。源代码将来会发布。
Contrastive learning (CL) has shown its power in recommendation. However, most CL-based recommendation models build their CL tasks merely focusing on the user's aspects, ignoring the rich diverse information in items. In this work, we propose a novel Multi-granularity item-based contrastive learning (MicRec) framework for the matching stage (i.e., candidate generation) in recommendation, which systematically introduces multi-aspect item-related information to representation learning with CL. Specifically, we build three item-based CL tasks as a set of plug-and-play auxiliary objectives to capture item correlations in feature, semantic and session levels. The feature-level item CL aims to learn the fine-grained feature-level item correlations via items and their augmentations. The semantic-level item CL focuses on the coarse-grained semantic correlations between semantically related items. The session-level item CL highlights the global behavioral correlations of items from users' sequential behaviors in all sessions. In experiments, we conduct both offline and online evaluations on real-world datasets, verifying the effectiveness and universality of three proposed CL tasks. Currently, MicRec has been deployed on a real-world recommender system, affecting millions of users. The source code will be released in the future.