论文标题

在Galilean Constromal Bootstrap II:$ξ= 0 $ sector

On Galilean Conformal Bootstrap II: $ξ=0$ sector

论文作者

Chen, Bin, Hao, Peng-xiang, Liu, Reiko, Yu, Zhe-fei

论文摘要

在这项工作中,我们继续在二维Galilean共形场理论(GCFT $ _2 $)上进行工作。我们以前的工作(Arxiv:2011.11092)着重于$ξ\ neq 0 $ sector,在这里我们调查了更微妙的$ξ= 0 $ sector,以完成讨论。情况$ξ= 0 $是退化的,因为在一般$ξ= 0 $ boost倍增中出现了有趣的空状态。我们指定这些无效状态并制定结果选择规则。然后,我们计算$ξ= 0 $全局GCA块,发现它们可以写成几个构建块的线性组合,每个块可以从$ sl(2,\ mathbb {r})$ casimir方程中获得。这些构建块使我们也可以给出欧几里得反转公式。作为一致性检查,我们研究了BMS自由标量理论中某些顶点算子的四点函数。在这种情况下,$ξ= 0 $ sector是传播通道中唯一的允许扇区。我们发现4点函数的直接扩展会重现全局GCA块,并且与反转公式一致。

In this work, we continue our work on two dimensional Galilean conformal field theory (GCFT$_2$). Our previous work (arXiv:2011.11092) focused on the $ξ\neq 0$ sector, here we investigate the more subtle $ξ=0$ sector to complete the discussion. The case $ξ=0$ is degenerate since there emerge interesting null states in a general $ξ=0$ boost multiplet. We specify these null states and work out the resulting selection rules. Then, we compute the $ξ=0$ global GCA blocks and find that they can be written as a linear combination of several building blocks, each of which can be obtained from a $sl(2,\mathbb{R})$ Casimir equation. These building blocks allow us to give an Euclidean inversion formula as well. As a consistency check, we study four-point functions of certain vertex operators in the BMS free scalar theory. In this case, the $ξ=0$ sector is the only allowable sector in the propagating channel. We find that the direct expansion of the 4-point function reproduces the global GCA block and is consistent with the inversion formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源