论文标题

操纵器差异运动学:第2部分:加速度和高级应用

Manipulator Differential Kinematics: Part 2: Acceleration and Advanced Applications

论文作者

Haviland, Jesse, Corke, Peter

论文摘要

这是关于操纵器差异运动学教程的第二篇也是最后一篇文章。在第1部分中,我们描述了一种使用基本变换序列(ET)建模运动学的方法,然后在制定前向运动学和操纵器Jacobian之前。然后,我们描述了操纵器Jacobian的一些基本应用,包括解决速率运动控制(RRMC),逆运动学(IK)和一些操纵器性能指标。 在本文中,我们制定了二阶差异运动学,从而定义了操纵器Hessian。然后,我们描述了差异运动学的分析形式,这对于动态应用至关重要。随后,我们为高阶导数提供了一个通用公式。我们考虑的第一个应用程序是高级速度控制。在本节中,我们将解决的速率运动控制扩展到执行子任务,同时仍然实现目标,然后重新定义算法作为二次程序,以实现更大的灵活性和其他约束。然后,我们再次查看数值逆运动学,重点是增加约束。最后,我们分析了操纵器黑森州如何帮助逃避奇异性。 我们提供了Jupyter笔记本,以伴随本教程中的每个部分。这些笔记本是用Python代码编写的,并为Python使用Robotics Toolbox,以及Swift Simulator提供算法的示例和实现。虽然不是绝对必要的,但对于最吸引人和最有用的经验,我们建议您在阅读本文时使用Jupyter笔记本。可以在https://github.com/jhavl/dkt上访问笔记本和设置说明。

This is the second and final article on the tutorial on manipulator differential kinematics. In Part 1, we described a method of modelling kinematics using the elementary transform sequence (ETS), before formulating forward kinematics and the manipulator Jacobian. We then described some basic applications of the manipulator Jacobian including resolved-rate motion control (RRMC), inverse kinematics (IK), and some manipulator performance measures. In this article, we formulate the second-order differential kinematics, leading to a definition of manipulator Hessian. We then describe the differential kinematics' analytical forms, which are essential to dynamics applications. Subsequently, we provide a general formula for higher-order derivatives. The first application we consider is advanced velocity control. In this section, we extend resolved-rate motion control to perform sub-tasks while still achieving the goal before redefining the algorithm as a quadratic program to enable greater flexibility and additional constraints. We then take another look at numerical inverse kinematics with an emphasis on adding constraints. Finally, we analyse how the manipulator Hessian can help to escape singularities. We have provided Jupyter Notebooks to accompany each section within this tutorial. The Notebooks are written in Python code and use the Robotics Toolbox for Python, and the Swift Simulator to provide examples and implementations of algorithms. While not absolutely essential, for the most engaging and informative experience, we recommend working through the Jupyter Notebooks while reading this article. The Notebooks and setup instructions can be accessed at https://github.com/jhavl/dkt.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源