论文标题

Lebesgue分化过程沿矩形几乎到处融合

Almost everywhere convergence for Lebesgue differentiation processes along rectangles

论文作者

D'Aniello, Emma, Gauvan, Anthony, Moonens, Laurent, Rosenblatt, Joseph M.

论文摘要

在本文中,我们研究了沿着矩形$ r_k $在欧几里得飞机上缩小起点的Lebesgue分化过程,以及它们在$ l^p $空间中几乎无处不在的问题。特别是,此类过程的示例类别未能收敛A.E.提供了$ l^\ infty $,为此,已知$ r_k $沿斜率$ k^{ - s} $ for $ s> 0 $,这与与集合$ \ \ \ \ s in \ in \ in \ n \ in \ mathbb {$ lafe in \ n^$ lafe to $ n} $ lafe to $ s}的方向最大运算符相关的事实很有趣。任何$ 1 \ leq p <\ infty $。

In this paper, we study Lebesgue differentiation processes along rectangles $R_k$ shrinking to the origin in the Euclidean plane, and the question of their almost everywhere convergence in $L^p$ spaces. In particular, classes of examples of such processes failing to converge a.e. in $L^\infty$ are provided, for which $R_k$ is known to be oriented along the slope $k^{-s}$ for $s>0$, yielding an interesting counterpart to the fact that the directional maximal operator associated to the set $\{k^{-s}:k\in\mathbb{N}^*\}$ fails to be bounded in $L^p$ for any $1\leq p<\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源