论文标题
离线RL政策应接受培训以自适应
Offline RL Policies Should be Trained to be Adaptive
论文作者
论文摘要
离线RL算法必须说明其提供的数据集可能使环境的许多方面未知。应对这一挑战的最常见方法是采用悲观或保守的方法,避免行为与培训数据集中的行为过于不同。但是,仅依靠保守主义存在缺点:绩效对保守主义的确切程度很敏感,保守的目标可以恢复高度最佳的政策。在这项工作中,我们建议在不确定性的情况下,脱机RL方法应该是自适应的。我们表明,在贝叶斯的意义上,在离线RL中最佳作用涉及解决隐式POMDP。结果,离线RL的最佳策略必须具有自适应,这不仅取决于当前状态,还取决于迄今为止在评估期间看到的所有过渡。我们提出了一种无模型的算法,用于近似于这种最佳的适应性政策,并证明了在Offline RL rl Benchmarks中学习此类适应性政策的功效。
Offline RL algorithms must account for the fact that the dataset they are provided may leave many facets of the environment unknown. The most common way to approach this challenge is to employ pessimistic or conservative methods, which avoid behaviors that are too dissimilar from those in the training dataset. However, relying exclusively on conservatism has drawbacks: performance is sensitive to the exact degree of conservatism, and conservative objectives can recover highly suboptimal policies. In this work, we propose that offline RL methods should instead be adaptive in the presence of uncertainty. We show that acting optimally in offline RL in a Bayesian sense involves solving an implicit POMDP. As a result, optimal policies for offline RL must be adaptive, depending not just on the current state but rather all the transitions seen so far during evaluation.We present a model-free algorithm for approximating this optimal adaptive policy, and demonstrate the efficacy of learning such adaptive policies in offline RL benchmarks.