论文标题

部分可观测时空混沌系统的无模型预测

Unsupervised Learning for Human Sensing Using Radio Signals

论文作者

Li, Tianhong, Fan, Lijie, Yuan, Yuan, Katabi, Dina

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

There is a growing literature demonstrating the feasibility of using Radio Frequency (RF) signals to enable key computer vision tasks in the presence of occlusions and poor lighting. It leverages that RF signals traverse walls and occlusions to deliver through-wall pose estimation, action recognition, scene captioning, and human re-identification. However, unlike RGB datasets which can be labeled by human workers, labeling RF signals is a daunting task because such signals are not human interpretable. Yet, it is fairly easy to collect unlabelled RF signals. It would be highly beneficial to use such unlabeled RF data to learn useful representations in an unsupervised manner. Thus, in this paper, we explore the feasibility of adapting RGB-based unsupervised representation learning to RF signals. We show that while contrastive learning has emerged as the main technique for unsupervised representation learning from images and videos, such methods produce poor performance when applied to sensing humans using RF signals. In contrast, predictive unsupervised learning methods learn high-quality representations that can be used for multiple downstream RF-based sensing tasks. Our empirical results show that this approach outperforms state-of-the-art RF-based human sensing on various tasks, opening the possibility of unsupervised representation learning from this novel modality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源