论文标题
随机过程主方程的量子分解算法:阻尼旋转案例
Quantum Decomposition Algorithm For Master Equations of Stochastic Processes: The Damped Spin Case
论文作者
论文摘要
我们介绍了一种量子分解算法(QDA),该算法分解了问题$ \ frac {\ partialρ} {\ partial t} = \ mathcal {l}ρ=λρ$,以汇总到eigenvalues times times times times阶段空间空间变量的求和。 QDA的一个有趣特征源于其通过根据原始特征值问题的特征值调整的纯量子谐波振荡器来模拟阻尼自旋系统的能力。在没有自发发射和脱位的情况下,我们测试了提出的算法。
We introduce a quantum decomposition algorithm (QDA) that decomposes the problem $\frac{\partial ρ}{\partial t}=\mathcal{L}ρ=λρ$ into a summation of eigenvalues times phase-space variables. One interesting feature of QDA stems from its ability to simulate damped spin systems by means of pure quantum harmonic oscillators adjusted with the eigenvalues of the original eigenvalue problem. We test the proposed algorithm in the case of undriven qubit with spontaneous emission and dephasing.