论文标题

多目标厄戈德搜索的本地优化框架

A Local Optimization Framework for Multi-Objective Ergodic Search

论文作者

Ren, Zhongqiang, Srinivasan, Akshaya Kesarimangalam, Coffin, Howard, Abraham, Ian, Choset, Howie

论文摘要

机器人有可能在不同情况下搜索各种应用程序。我们的工作是由人道主义助理和救灾(HADR)的动机,在存在冲突的标准,目标和信息的情况下,找到生命的迹象通常至关重要。我们认为,厄运搜索可以提供一个框架来利用可用信息,并为HADR等应用程序探索新信息,尤其是在时间本质上。千古搜索算法规划轨迹,使得在一个区域中所花费的时间与该地区的信息量成正比,并且能够自然平衡剥削(近视搜索高信息领域)和探索(访问搜索空间中的所有位置以获取新信息)。现有的Ergodic搜索算法以及其他基于信息的方法通常仅使用单个信息图考虑搜索。但是,在许多情况下,使用多个编码不同类型相关信息的多个信息图很常见。当前的厄运搜索方法没有同时的能力,也不具有平衡哪些信息获得优先级的方法。这使我们提出了一个多目标的千古搜索(MOES)问题,旨在找到所谓的帕累托最佳解决方案,目的是为人类的决策者提供各种解决方案,这些解决方案在相互矛盾的标准之间进行贸易。为了有效地解决MOE,我们开发了一个称为顺序局部厄运搜索(SLE)的框架,该框架将MOES问题转换为“重量空间覆盖率”问题。它利用了厄尔贡搜索方法的最新进展以及局部优化的想法,以有效地近似帕累托最佳前沿。我们的数值结果表明,SLE的运行速度明显快于基线方法。

Robots have the potential to perform search for a variety of applications under different scenarios. Our work is motivated by humanitarian assistant and disaster relief (HADR) where often it is critical to find signs of life in the presence of conflicting criteria, objectives, and information. We believe ergodic search can provide a framework for exploiting available information as well as exploring for new information for applications such as HADR, especially when time is of the essence. Ergodic search algorithms plan trajectories such that the time spent in a region is proportional to the amount of information in that region, and is able to naturally balance exploitation (myopically searching high-information areas) and exploration (visiting all locations in the search space for new information). Existing ergodic search algorithms, as well as other information-based approaches, typically consider search using only a single information map. However, in many scenarios, the use of multiple information maps that encode different types of relevant information is common. Ergodic search methods currently do not possess the ability for simultaneous nor do they have a way to balance which information gets priority. This leads us to formulate a Multi-Objective Ergodic Search (MOES) problem, which aims at finding the so-called Pareto-optimal solutions, for the purpose of providing human decision makers various solutions that trade off between conflicting criteria. To efficiently solve MOES, we develop a framework called Sequential Local Ergodic Search (SLES) that converts a MOES problem into a "weight space coverage" problem. It leverages the recent advances in ergodic search methods as well as the idea of local optimization to efficiently approximate the Pareto-optimal front. Our numerical results show that SLES runs distinctly faster than the baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源