论文标题
忠实地量化电子纠缠
Quantifying Electron Entanglement Faithfully
论文作者
论文摘要
纠缠是现代物理学最迷人的概念之一。然而,与其抽象的数学基础形成鲜明对比,其实际方面的发展欠发达。即使对于仅有两个轨道或站点的系统,也没有忠实的纠缠措施。通过利用现实的多电子系统的自旋对称性,我们成功地得出了一个封闭式公式,以供电子轨道之间的纠缠相对熵。证明了它在量子科学中的广泛适用性:(i)鉴于第二量子革命,它通过合并至关重要的费米子取代规则(ii)对长距离纠缠的自由电子链中的长距离纠缠来量化真正的物理纠缠,从而发现了Kohn的位置原理(III II II III),并确认了邦德阶段(III III)。通用分子键结构的量子复杂性可以通过轨道变换边缘化,从而使零含量波函数合理化。
Entanglement is one of the most fascinating concepts of modern physics. In striking contrast to its abstract, mathematical foundation, its practical side is, however, remarkably underdeveloped. Even for systems of just two orbitals or sites no faithful entanglement measure is known yet. By exploiting the spin symmetries of realistic many-electron systems, we succeed in deriving a closed formula for the relative entropy of entanglement between electron orbitals. Its broad applicability in the quantum sciences is demonstrated: (i) in light of the second quantum revolution, it quantifies the true physical entanglement by incorporating the crucial fermionic superselection rule (ii) an analytic description of the long-distance entanglement in free electron chains is found, refining Kohn's locality principle (iii) the bond-order wave phase in the extended Hubbard model can be confirmed, and (iv) the quantum complexity of common molecular bonding structures could be marginalized through orbital transformations, thus rationalizing zero-seniority wave function ansatzes.