论文标题
使用神经连通性约束赢得彩票:跨认知任务更快地学习具有空间约束的稀疏RNN
Winning the lottery with neural connectivity constraints: faster learning across cognitive tasks with spatially constrained sparse RNNs
论文作者
论文摘要
经常性的神经网络(RNN)通常用于模拟大脑中的电路,并且可以解决需要记忆,错误校正或选择的各种困难计算问题[Hopfield,1982,Maass等,2002,Maass,Maass,2011]。然而,完全连接的RNN与它们的生物学对应物形成鲜明对比,它们的生物学极为稀疏(〜0.1%)。由新皮层的动机,在新皮层中,神经连通性受到皮质板和其他突触接线成本的物理距离的限制,我们介绍了局部掩盖的RNN(LM-RNN),这些RNN(LM-RNN)利用任务 - 静态的预定图的稀疏性较低。我们使用一组常用的任务(20个cog任务)[Yang等,2019]中研究与认知系统神经科学相关的多任务学习设置中的LM-RNN。我们通过还原性荒谬表明,可以通过一小群分离的自动化量来解决20个cog任务,我们可以机械地分析和理解。因此,这些任务尚未达到诱导RNN中复杂的复发动力学和模块化结构的目标。接下来,我们贡献了一个新的认知多任务电池,Mod-Cog,由多达132个任务组成,该任务扩大了7倍的任务和20个COG任务任务。重要的是,尽管Autapses可以解决简单的20个COG任务,但扩展的任务集需要更丰富的神经体系结构和连续的吸引力动力学。在这些任务上,我们表明具有最佳稀疏性的LM-RNN会导致比完全连接的网络更快地训练和更好的数据效率。
Recurrent neural networks (RNNs) are often used to model circuits in the brain, and can solve a variety of difficult computational problems requiring memory, error-correction, or selection [Hopfield, 1982, Maass et al., 2002, Maass, 2011]. However, fully-connected RNNs contrast structurally with their biological counterparts, which are extremely sparse (~0.1%). Motivated by the neocortex, where neural connectivity is constrained by physical distance along cortical sheets and other synaptic wiring costs, we introduce locality masked RNNs (LM-RNNs) that utilize task-agnostic predetermined graphs with sparsity as low as 4%. We study LM-RNNs in a multitask learning setting relevant to cognitive systems neuroscience with a commonly used set of tasks, 20-Cog-tasks [Yang et al., 2019]. We show through reductio ad absurdum that 20-Cog-tasks can be solved by a small pool of separated autapses that we can mechanistically analyze and understand. Thus, these tasks fall short of the goal of inducing complex recurrent dynamics and modular structure in RNNs. We next contribute a new cognitive multi-task battery, Mod-Cog, consisting of upto 132 tasks that expands by 7-fold the number of tasks and task-complexity of 20-Cog-tasks. Importantly, while autapses can solve the simple 20-Cog-tasks, the expanded task-set requires richer neural architectures and continuous attractor dynamics. On these tasks, we show that LM-RNNs with an optimal sparsity result in faster training and better data-efficiency than fully connected networks.