论文标题
部分可观测时空混沌系统的无模型预测
Towards Optimal Integrated Planning of Electricity and Hydrogen Infrastructure for Large-Scale Renewable Energy Transport
论文作者
论文摘要
大规模绿色氢(H2)生产的迫在眉睫的出现提出了最具成本效益的两种选择,即运输“绿色”分子或运输“绿色”电子的两个选项中的哪个中心问题。本文提出了一个首先使用的数学框架,用于运输大规模可变能源(VRE)的最佳电力和H2基础设施的最佳集成计划。与大多数现有作品相反,这项工作结合了基本的非线性,例如由于高压交替电流(HVAC)和高压直流(HVDC)传输线的损失,HVDC转换器站的损失,反应性功率流动,管道和线条中的压力下降,全部扮演着最佳的决定,在确定性上扮演了重要的决定。捕获这些非线性需要将问题抛弃为非凸混合人非线性程序(MINLP),由于RES预测的时间相对较高,由于其相对较高的时间分辨率,其大小的复杂性进一步加剧了其复杂性。然后,这项工作利用了凸松弛的最新进展,以解决混合构成四边形的编程(MIQCP)问题的形式解决可拖动的替代方案。在规范的两节点系统上还彻底分析了其他基本因素(例如传输距离和RES容量)的影响。然后,在涉及澳大利亚可再生能源区的现实世界案例研究中展示了综合计划模型。
The imminent advent of large-scale green hydrogen (H2) production raises the central question of which of the two options, transporting "green" molecules, or transporting "green" electrons, is the most cost-effective one. This paper proposes a first-of-its-kind mathematical framework for the optimal integrated planning of electricity and H2 infrastructure for transporting large-scale variable renewable energy (VRE). In contrast to most existing works, this work incorporates essential nonlinearities such as voltage drops due to losses in high-voltage alternating current (HVAC) and high-voltage direct current (HVDC) transmission lines, losses in HVDC converter stations, reactive power flow, pressure drops in pipelines, and linepack, all of which play an important role in determining the optimal infrastructure investment decision. Capturing these nonlinearities requires casting the problem as a nonconvex mixed-integer nonlinear program (MINLP), whose complexity is further exacerbated by its large size due to the relatively high temporal resolution of RES forecasts. This work then leverages recent advancements in convex relaxations to instead solve a tractable alternative in the form of a mixed-integer quadratically constrained programming (MIQCP) problem. The impact of other fundamental factors such as transmission distance and RES capacity is also thoroughly analysed on a canonical two-node system. The integrated planning model is then demonstrated on a real-world case study involving renewable energy zones in Australia.