论文标题

部分可观测时空混沌系统的无模型预测

Production Assessment using a Knowledge Transfer Framework and Evidence Theory

论文作者

N., Fernando Arevalo, Piolo, Christian Alison M., Ibrahim, Tahasanul, Schwung, Andreas

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Operational knowledge is one of the most valuable assets in a company, as it provides a strategic advantage over competitors and ensures steady and optimal operation in machines. An (interactive) assessment system on the shop floor can optimize the process and reduce stopovers because it can provide constant valuable information regarding the machine condition to the operators. However, formalizing operational (tacit) knowledge to explicit knowledge is not an easy task. This transformation considers modeling expert knowledge, quantification of knowledge uncertainty, and validation of the acquired knowledge. This study proposes a novel approach for production assessment using a knowledge transfer framework and evidence theory to address the aforementioned challenges. The main contribution of this paper is a methodology for the formalization of tacit knowledge based on an extended failure mode and effect analysis for knowledge extraction, as well as the use of evidence theory for the uncertainty definition of knowledge. Moreover, this approach uses primitive recursive functions for knowledge modeling and proposes a validation strategy of the knowledge using machine data. These elements are integrated into an interactive recommendation system hosted on a backend that uses HoloLens as a visual interface. We demonstrate this approach using an industrial setup: a laboratory bulk good system. The results yield interesting insights, including the knowledge validation, uncertainty behavior of knowledge, and interactive troubleshooting for the machine operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源