论文标题

无定形纠缠的活动物质

Amorphous Entangled Active Matter

论文作者

Savoie, William, Tuazon, Harry, Bhamla, M. Saad, Goldman, Daniel I.

论文摘要

无定形纠缠系统的设计,特别是来自柔软和活跃的材料,有可能打开令人兴奋的新型活动,形状转移和具有任务功能的“智能”材料。但是,源于单个颗粒的局部相互作用而产生的全球新兴力学尚不清楚。在这项研究中,我们在三个不同的示例中检查了无定形纠缠系统的新兴特性:一个内部的“智能”收集,其宽松链和蠕虫斑点的纠缠骨料(L. variegatus)。在模拟中,我们研究了由动态三连锁机器人组成的集体的材料特性如何变化。我们比较了共同控制纠缠的三种方法:外部振荡,形状变化和内部振荡。我们发现,相对于纵横比(L/W),使用形状变化程序的粒子形状的大变化产生了最高的平均纠缠数量,从而提高了集体的拉伸强度。我们证明了这些模拟在两个实验系统中的应用:机器人链和纠缠蠕虫斑点。在机器人物理模型中,我们发现紧张狭窄的集体时出现的辅助行为。最后,我们展示了如何通过水中的环境溶解氧控制斑点中的单个蠕虫活性,从而导致活着的纠缠集体的复杂出现特性,例如实心纠缠和翻滚。综上所述,我们的工作揭示了未来调制,潜在的软机器人系统可能会动态改变其材料特性的原则,从而促进了我们对生活纠缠材料的理解,同时启发了新的合成型新兴的超级物质。

The design of amorphous entangled systems, specifically from soft and active materials, has the potential to open exciting new classes of active, shape-shifting, and task-capable 'smart' materials. However, the global emergent mechanics that arises from the local interactions of individual particles are not well understood. In this study, we examine the emergent properties of amorphous entangled systems in three different examples: an in-silico "smarticle" collection, its robophysical chain, and living entangled aggregate of worm blobs (L. variegatus). In simulations, we examine how material properties change for a collective composed of dynamic three-link robots. We compare three methods of controlling entanglement in a collective: externally oscillations, shape-changes, and internal oscillations. We find that large-amplitude changes of the particle's shape using the shape-change procedure produced the highest average number of entanglements, with respect to the aspect ratio (l/w), improving the tensile strength of the collective. We demonstrate application of these simulations in two experimental systems: robotic chains and entangled worm blobs. In the robophysical models, we find emergent auxeticity behavior upon straining the confined collective. And finally, we show how the individual worm activity in a blob can be controlled through the ambient dissolved oxygen in water, leading to complex emergent properties of the living entangled collective, such as solid-like entanglement and tumbling. Taken together, our work reveals principles by which future shape-modulating, potentially soft robotic systems may dynamically alter their material properties, advancing our understanding of living entangled materials, while inspiring new classes of synthetic emergent super-materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源