论文标题
模型预测性评估:增量测试集选择和准确性评估
Model predictivity assessment: incremental test-set selection and accuracy evaluation
论文作者
论文摘要
通过监督的机器学习方法学到的模型的预测性的公正评估需要在保留的测试集(不使用学习算法使用)上了解学习功能的知识。评估的质量自然取决于测试集的属性以及用于估计预测错误的错误统计量。在这项工作中,我们解决了这两个问题,提出了一个新的预测性标准,该标准仔细权衡单个观察到的错误以获得全局误差估计,并使用增量实验设计方法“最佳地”选择计算标准的测试点。研究了几种增量结构,包括贪婪包装(咖啡馆设计),支撑点和内核资产技术。我们的结果表明,后两个的增量和加权版本基于最大的平均差异概念,产生了出色的性能。历史法国电力供应商(EDF)提供的工业测试案例说明了该方法的实际相关性,表明它是昂贵的交叉验证技术的有效替代品。
Unbiased assessment of the predictivity of models learnt by supervised machine-learning methods requires knowledge of the learned function over a reserved test set (not used by the learning algorithm). The quality of the assessment depends, naturally, on the properties of the test set and on the error statistic used to estimate the prediction error. In this work we tackle both issues, proposing a new predictivity criterion that carefully weights the individual observed errors to obtain a global error estimate, and using incremental experimental design methods to "optimally" select the test points on which the criterion is computed. Several incremental constructions are studied, including greedy-packing (coffee-house design), support points and kernel herding techniques. Our results show that the incremental and weighted versions of the latter two, based on Maximum Mean Discrepancy concepts, yield superior performance. An industrial test case provided by the historical French electricity supplier (EDF) illustrates the practical relevance of the methodology, indicating that it is an efficient alternative to expensive cross-validation techniques.