论文标题

与热绝缘有关的非线性椭圆形问题的形状优化

Shape optimization for a nonlinear elliptic problem related to thermal insulation

论文作者

Barbato, Rosa

论文摘要

在本文中,我们考虑了$$ I_ {β,p}(d;ω)= \ inf \ biggl \ {\int_Ω\ lvert {d ϕ} \ rvert^pdx+β\ int _ {\ int _ {\ partial^**东ϕ\in W^{1,p}(Ω),\;ϕ\geq 1 \;\textrm{in}\;D\biggl\}, $$ where $Ω$ is a bounded connected open set in $\mathbb{R}^n$, $D\subset \barΩ$ is a compact set and $β$ is a positive constant.我们让集合$ d $在规定的几何约束和固定厚度的$ω\ setMinus d $下变化,以便以最小化(或最大化)为$ i_ {β,p} $的最小化(或最大化)。在平面案例中,我们表明在圆盘下,磁盘最大化$ i_ {β,p} $。在$ n $维的情况下,我们将分析限制为凸起集,表明球对球是正确的,但在不同的几何约束下。

In this paper we consider a minimization problem of the type $$ I_{β,p}(D;Ω)=\inf\biggl\{\int_Ω\lvert{Dϕ}\rvert^pdx+β\int_{\partial^* Ω}\lvertϕ\rvert^pd\mathcal{H}^{n-1},\; ϕ\in W^{1,p}(Ω),\;ϕ\geq 1 \;\textrm{in}\;D\biggl\}, $$ where $Ω$ is a bounded connected open set in $\mathbb{R}^n$, $D\subset \barΩ$ is a compact set and $β$ is a positive constant. We let the set $D$ vary under prescribed geometrical constraints and $Ω\setminus D$ of fixed thickness, in order to look for the best (or worst) geometry in terms of minimization (or maximization) of $I_{β,p}$. In the planar case, we show that under perimeter constraint the disk maximize $I_{β,p}$. In the $n$-dimensional case we restrict our analysis to convex sets showing that the same is true for the ball but under different geometrical constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源