论文标题
NEXG:使用灵敏度近似的神经网络控制系统的可证明和指导状态空间探索
NExG: Provable and Guided State Space Exploration of Neural Network Control Systems using Sensitivity Approximation
论文作者
论文摘要
我们提出了一种使用神经网络反馈控制器对封闭环控制系统进行状态空间探索的新技术。我们的方法涉及近似闭环动力学轨迹的灵敏度。使用这样的近似器和系统模拟器,我们提出了一种带有的状态空间探索方法,该方法可以在指定时间生成访问目标状态附近的轨迹。我们提出了一个理论框架,该框架确定我们的方法将产生一系列轨迹,该轨迹将到达目标状态的合适邻里。我们通过具有不同配置的神经网络反馈控制器对各种系统的方法进行彻底评估。我们的表现优于早期的状态探索技术,并在质量(解释性)和性能(收敛速度)方面取得了重大改进。最后,我们采用算法来伪造一类时间逻辑规范,评估其针对最先进的伪造工具的性能,并在补充现有的伪造算法方面表现出了潜力。
We propose a new technique for performing state space exploration of closed loop control systems with neural network feedback controllers. Our approach involves approximating the sensitivity of the trajectories of the closed loop dynamics. Using such an approximator and the system simulator, we present a guided state space exploration method that can generate trajectories visiting the neighborhood of a target state at a specified time. We present a theoretical framework which establishes that our method will produce a sequence of trajectories that will reach a suitable neighborhood of the target state. We provide thorough evaluation of our approach on various systems with neural network feedback controllers of different configurations. We outperform earlier state space exploration techniques and achieve significant improvement in both the quality (explainability) and performance (convergence rate). Finally, we adopt our algorithm for the falsification of a class of temporal logic specification, assess its performance against a state-of-the-art falsification tool, and show its potential in supplementing existing falsification algorithms.