论文标题
使用光弹性层析成像调查了软材料中赫兹的接触
An investigation of Hertzian contact in soft materials using photoelastic tomography
论文作者
论文摘要
使用集成光弹性研究了刚性球体的赫兹(Hertzian)接触和高度可变形的软固体。实验是通过按直径为15毫米的苯乙烯球进行的,与44 x 44 x 47毫米$^3 $ cuboid由5%wt制成。明胶,在圆形极性座中,并具有一系列力。考虑到每条射线的延迟具有穿越接触诱导的轴对称应力场的累积效应,可以处理新兴的光线。然后,假设赫兹(Hertzian)理论是有效的,则根据每个射线进行分析计算的延迟,并将其与实验性相比。此外,该过程的有限元模型引入了有限位移和应变的效果。除了对延迟场的定性比较之外,根据最大等效应力,表面位移和接触半径尺寸,实验,理论和数值结果进行了定量比较。在较低的力量水平上发现了一个有利的一致性,其中赫兹理论的假设成立,而在较高的力水平上观察到偏差。这项工作的一个主要发现是,在最大的等效应力位置,可以通过实验确定主应力的所有三个组成部分,并在我们的测量范围内与理论和数值的一致性显示出令人满意的一致性。这为赫兹的接触问题提供了宝贵的见解,因为最大的等效应力控制了塑性变形或故障的启动。测得的位移和接触半径也与理论和数值相当一致。最后,探索了由于该问题的线性化而产生的局限性。
Hertzian contact of a rigid sphere and a highly deformable soft solid is investigated using integrated photoelasticity. The experiments are performed by pressing a styrene sphere of 15 mm diameter against a 44 x 44 x 47 mm$^3$ cuboid made of 5% wt. gelatin, inside a circular polariscope, and with a range of forces. The emerging light rays are processed by considering that the retardation of each ray carries the cumulative effect of traversing the contact-induced axisymmetric stress field. Then, assuming Hertzian theory is valid, the retardation is analytically calculated for each ray and compared to the experimental one. Furthermore, a finite element model of the process introduces the effect of finite displacements and strains. Beyond the qualitative comparison of the retardation fields, the experimental, theoretical, and numerical results are quantitatively compared in terms of the maximum equivalent stress, surface displacement, and contact radius dimensions. A favorable agreement is found at lower force levels, where the assumptions of Hertz theory hold, whereas deviations are observed at higher force levels. A major discovery of this work is that at the maximum equivalent stress location, all three components of principal stress can be determined experimentally, and show satisfactory agreement with theoretical and numerical ones in our measurement range. This provides valuable insight into Hertzian contact problems since the maximum equivalent stress controls the initiation of plastic deformation or failure. The measured displacement and contact radii also reasonably agree with the theoretical and numerical ones. Finally, the limitations that arise due to the linearization of this problem are explored.