论文标题
生成伪标签,以适应几个型模型远程元学习
Generating Pseudo-labels Adaptively for Few-shot Model-Agnostic Meta-Learning
论文作者
论文摘要
模型不合时宜的元学习(MAML)是一种著名的少数学习方法,它启发了许多后续工作,例如Anil和Boil。但是,作为一种归纳方法,MAML无法完全利用查询集的信息,从而限制了其获得更高通用性的潜力。为了解决这个问题,我们提出了一种简单而有效的方法,该方法可以适应性地生成伪标记,并可以提高MAML家族的性能。所提出的方法,称为生成伪标签的MAML(GP-MAML),GP-Anil和GP-Boil,该查询的利用统计数据旨在提高新任务的性能。具体而言,我们自适应地添加伪标签并从查询集中挑选样品,然后使用挑选的查询样本和支持集对模型进行重新培训。 GP系列还可以使用伪查询集中的信息在元测试过程中重新培训网络。尽管某些转导方法(例如跨传播网络(TPN))努力实现这一目标。
Model-Agnostic Meta-Learning (MAML) is a famous few-shot learning method that has inspired many follow-up efforts, such as ANIL and BOIL. However, as an inductive method, MAML is unable to fully utilize the information of query set, limiting its potential of gaining higher generality. To address this issue, we propose a simple yet effective method that generates psuedo-labels adaptively and could boost the performance of the MAML family. The proposed methods, dubbed Generative Pseudo-label based MAML (GP-MAML), GP-ANIL and GP-BOIL, leverage statistics of the query set to improve the performance on new tasks. Specifically, we adaptively add pseudo labels and pick samples from the query set, then re-train the model using the picked query samples together with the support set. The GP series can also use information from the pseudo query set to re-train the network during the meta-testing. While some transductive methods, such as Transductive Propagation Network (TPN), struggle to achieve this goal.