论文标题
使用约束分子的Minkowski差异的有效向后无关
Efficient Backward Reachability Using the Minkowski Difference of Constrained Zonotopes
论文作者
论文摘要
向后的可及性分析对于确保闭环系统正确性的合成控制器至关重要。本文涉及开发可扩展的算法,这些算法低于向后可达集合,对于离散时间不确定的线性和非线性系统。我们的算法依次将动力学线性化,并使用受约束的编号进行设置表示和计算。我们算法的主要技术成分是一种有效的方法,使得降低了受约束的分区最小值和地位量亚曲线之间的Minkowski差异,该差异包括不确定性和线性化误差的所有可能值。该Minkowski差异需要表示为受约束的划界,以实现后续计算,但是,如我们所示,在多项式时间内无法找到多项式大小的表示。我们的算法在多项式时间内发现多项式大小的不足症状。我们进一步分析了这种不受欢迎的技术的保守主义,并表明它在某些条件下是确切的。基于开发的Minkowski差异技术,我们详细介绍了两个向后伸出的计算算法以控制线性化误差并结合了非convex状态约束。几个例子说明了我们算法的有效性。
Backward reachability analysis is essential to synthesizing controllers that ensure the correctness of closed-loop systems. This paper is concerned with developing scalable algorithms that under-approximate the backward reachable sets, for discrete-time uncertain linear and nonlinear systems. Our algorithm sequentially linearizes the dynamics, and uses constrained zonotopes for set representation and computation. The main technical ingredient of our algorithm is an efficient way to under-approximate the Minkowski difference between a constrained zonotopic minuend and a zonotopic subtrahend, which consists of all possible values of the uncertainties and the linearization error. This Minkowski difference needs to be represented as a constrained zonotope to enable subsequent computation, but, as we show, it is impossible to find a polynomial-sized representation for it in polynomial time. Our algorithm finds a polynomial-sized under-approximation in polynomial time. We further analyze the conservatism of this under-approximation technique, and show that it is exact under some conditions. Based on the developed Minkowski difference technique, we detail two backward reachable set computation algorithms to control the linearization error and incorporate nonconvex state constraints. Several examples illustrate the effectiveness of our algorithms.