论文标题
一些代数表面,具有10、12、14的规范图
Some algebraic surfaces with canonical map of degree 10, 12, 14
论文作者
论文摘要
D度大于8的规范图的一般类型表面具有有界的几何属和不规则性。特别是,如果d> = 10。在本文中,最多是2个,则具有d = 10的表面和所有可能的不规则性,d = 12和不规则性1和2的表面,以及d = 14和不规则性0和1的表面是通过将这些表面构建为$ \ m nathbbbb {z} _2^3 $ _____________________________________________________________________________________________________________________2^3 $ - 这些结果与d = 12和不规则性0的表面的C. rito结构一起表明,在情况下可能发生不规则性的所有可能性,d = 10,d = 12可能发生,而存在d = 14和不规则性2的表面仍然是一个开放的问题。
Surfaces of general type with canonical map of degree d bigger than 8 have bounded geometric genus and irregularity. In particular the irregularity is at most 2 if d>= 10. In the present paper, the existence of surfaces with d=10 and all possible irregularities, surfaces with d = 12 and irregularity 1 and 2, and surfaces with d = 14 and irregularity 0 and 1 is proven, by constructing these surfaces as $ \mathbb{Z}_2^3 $-covers of certain rational surfaces. These results together with the construction by C. Rito of a surface with d=12 and irregularity 0 show that all the possibilities for the irregularity in the cases d=10, d=12 can occur, whilst the existence of a surface with d=14 and irregularity 2 is still an open problem.