论文标题

胸部X射线中弱监督病理学定位的放射学引导的全球本地变压器

Radiomics-Guided Global-Local Transformer for Weakly Supervised Pathology Localization in Chest X-Rays

论文作者

Han, Yan, Holste, Gregory, Ding, Ying, Tewfik, Ahmed, Peng, Yifan, Wang, Zhangyang

论文摘要

在深度学习方法对自动医学图像分析的最新成功之前,从业者使用手工制作的放射线特征来定量描述当地的医学图像斑块。但是,提取区分性放射素特征依赖于准确的病理定位,这在现实世界中很难获得。尽管疾病分类和胸部X射线的定位方面取得了进步,但许多方法未能纳入临床知名的领域知识。由于这些原因,我们提出了一种放射线引导的变压器(RGT),该变压器(RGT)与\ textIt {global}图像信息与\ textit {local}知识引导的放射线信息信息融合,以提供准确的心肺病理学位置和分类\ textIt \ textIt {而无需任何界限盒。 RGT由图像变压器分支,放射线变压器分支以及聚集图像和放射线信息的融合层组成。 RGT使用对图像分支的自我注意事项,提取了一个边界框,用于计算放射线特征,该特征由放射线分支进一步处理。然后通过跨注意层融合学习的图像和放射线特征并相互相互作用。因此,RGT利用了一种新型的端到端反馈回路,该回路只能使用图像水平疾病标签引导精确的病理定位。 NIH ChestXRay数据集的实验表明,RGT的表现优于弱监督疾病定位的先前作品(在各个相互跨联盟阈值的平均余量为3.6 \%)和分类(在接收器操作方曲线下平均面积为1.1 \%)。我们通过\ url {https://github.com/vita-group/chext}公开发布代码和预训练的模型。

Before the recent success of deep learning methods for automated medical image analysis, practitioners used handcrafted radiomic features to quantitatively describe local patches of medical images. However, extracting discriminative radiomic features relies on accurate pathology localization, which is difficult to acquire in real-world settings. Despite advances in disease classification and localization from chest X-rays, many approaches fail to incorporate clinically-informed domain knowledge. For these reasons, we propose a Radiomics-Guided Transformer (RGT) that fuses \textit{global} image information with \textit{local} knowledge-guided radiomics information to provide accurate cardiopulmonary pathology localization and classification \textit{without any bounding box annotations}. RGT consists of an image Transformer branch, a radiomics Transformer branch, and fusion layers that aggregate image and radiomic information. Using the learned self-attention of its image branch, RGT extracts a bounding box for which to compute radiomic features, which are further processed by the radiomics branch; learned image and radiomic features are then fused and mutually interact via cross-attention layers. Thus, RGT utilizes a novel end-to-end feedback loop that can bootstrap accurate pathology localization only using image-level disease labels. Experiments on the NIH ChestXRay dataset demonstrate that RGT outperforms prior works in weakly supervised disease localization (by an average margin of 3.6\% over various intersection-over-union thresholds) and classification (by 1.1\% in average area under the receiver operating characteristic curve). We publicly release our codes and pre-trained models at \url{https://github.com/VITA-Group/chext}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源