论文标题
Banach Property(t),用于$ \ rm sl_n(\ Mathbb {z})$及其应用程序
Banach property (T) for $\rm SL_n (\mathbb{Z})$ and its applications
论文作者
论文摘要
我们证明,一个较高的较高等级的简单谎言组(包括$ n \ geq 3 $)的$ \ rm sl_n(\ mathbb {r})$,他们的晶格就所有超级反省的Banach空间都具有Banach属性(T)。 该结果的两个后果是:首先,我们针对所有高级简单谎言组的大家族的所有超反射性Banach空间推断出Banach的固定点特性。例如,我们表明,对于每个$ n \ geq 4 $,$ \ rm sl_n(\ m马理{r})$及其所有晶格都具有与所有超反射性Banach Space相对于所有超级反省的Banach Space。其次,我们解决了一个长期的开放问题,并表明Margulis Expanders($ \ rm sl_ {n}的Cayley图形(\ Mathbb {Z} / M \ Mathbb {Z})$ for固定$ n \ geq 3 $ 3 $和$ m $ tonding to Infinity to Infinity to to Infinity to 我们的所有结果源于以$ \ rm sl_3(\ mathbb {z})$证明Banach属性(T)。我们的$ \ rm sl_3(\ mathbb {z})$的证明方法依赖于$ \ rm sl_3(\ mathbb {z})$的uni-Triangular子组的相对Banach属性(T)的新颖证明。即使在经典的希尔伯特环境中,这种相对属性(T)的证明也是新的,并且本身就很有趣。
We prove that a large family of higher rank simple Lie groups (including $\rm SL_n (\mathbb{R})$ for $n \geq 3$) and their lattices have Banach property (T) with respect to all super-reflexive Banach spaces. Two consequences of this result are: First, we deduce Banach fixed point properties with respect to all super-reflexive Banach spaces for a large family of higher rank simple Lie groups. For example, we show that for every $n \geq 4$, the group $\rm SL_n (\mathbb{R})$ and all its lattices have the Banach fixed point property with respect to all super-reflexive Banach spaces. Second, we settle a long standing open problem and show that the Margulis expanders (Cayley graphs of $\rm SL_{n} (\mathbb{Z} / m \mathbb{Z} )$ for a fixed $n \geq 3$ and $m$ tending to infinity) are super-expanders. All of our results stem from proving Banach property (T) for $\rm SL_3 (\mathbb{Z})$. Our method of proof for $\rm SL_3 (\mathbb{Z})$ relies on a novel proof for relative Banach property (T) for the uni-triangular subgroup of $\rm SL_3 (\mathbb{Z})$. This proof of relative property (T) is new even in the classical Hilbert setting and is interesting in its own right.