论文标题
部分可观测时空混沌系统的无模型预测
Majorana zero modes in a magnetic and superconducting hybrid vortex
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose and investigate a new platform for the realization of Majorana zero modes in a thin-film heterostructure composed of an easy-plane ferromagnet and a superconductor with spin-orbit coupling. The system can support an energetically favorable bound state comprising a magnetic and a superconducting vortex. We show that a hybrid vortex thus created can host a robust zero-energy Majorana bound state at its core over a wide range of parameters, with its partner zero mode located at the outer boundary of a disk-shaped topological region. We identify a novel mechanism underlying the formation of the topological phase that, remarkably, relies on the orbital effect of the magnetization field and not on the usual Zeeman effect. The in-plane components of magnetization couple to electrons as a gauge potential with non-zero curl, thus creating an emergent magnetic field responsible for the gapped topologically non-trivial region surrounding the vortex core. Our construction allows the mobility of magnetic vortices to be imposed on the Majorana zero mode at the core of the superconducting vortex. In addition, the system shows a rich interplay between magnetism and superconductivity which might aid in developing future devices and technologies.