论文标题
$(2+1)$ - 尺寸非线性schrödinger方程的精确解决方案的稳定性具有任意非线性参数$κ$
Stability of exact solutions of the $(2+1)$-dimensional nonlinear Schrödinger equation with arbitrary nonlinearity parameter $κ$
论文作者
论文摘要
在这项工作中,我们将非线性schrödinger方程(NLSE)以$ 2+1 $尺寸为单位,并在具有外部限制潜力的情况下具有任意非线性指数$κ$。构建了系统的精确解决方案,并探索了它们对“质量”(即$ l^2 $ norm)和参数$κ$的稳定性。我们从理论上和数字上都观察到,与无限制的情况相比,限制电势的存在导致参数空间上稳定的范围更广泛。我们的分析表明,只要它们的质量小于关键值$ m^{\ ast}(κ)$,就存在所有$κ$的稳定解决方案。此外,我们发现有两个不同的临界质量,一个对应于宽度扰动,另一个对应于翻译扰动。德里克定理的结果也可以通过研究四参数集体坐标(4CC)近似的小幅度制度获得。 NLSE的数值稳定性分析表明,不稳定性曲线$ m^{\ ast}(κ)$ vs. $κ$在于德里克定理和4cc近似的两条曲线以下。在没有外部电势的情况下,$κ= 1 $划分了爆炸制度与稳定制度之间的分离。在这个4cc近似值中,对于$κ<1 $,当质量对转化不稳定的临界质量高于临界质量时,可以进行集体坐标的相当复杂的运动。能量保护可防止溶液的爆炸,并将溶液的中心限制在有限的空间结构域中。我们将该制度称为“沮丧”的爆炸制度,并给出一些插图。在附录中,我们展示了如何将这些结果扩展到任意的初始基态解决方案数据和任意空间维度$ d $。
In this work, we consider the nonlinear Schrödinger equation (NLSE) in $2+1$ dimensions with arbitrary nonlinearity exponent $κ$ in the presence of an external confining potential. Exact solutions to the system are constructed, and their stability over their "mass" (i.e., the $L^2$ norm) and the parameter $κ$ is explored. We observe both theoretically and numerically that the presence of the confining potential leads to wider domains of stability over the parameter space compared to the unconfined case. Our analysis suggests the existence of a stable regime of solutions for all $κ$ as long as their mass is less than a critical value $M^{\ast}(κ)$. Furthermore, we find that there are two different critical masses, one corresponding to width perturbations and the other one to translational perturbations. The results of Derrick's theorem are also obtained by studying the small amplitude regime of a four-parameter collective coordinate (4CC) approximation. A numerical stability analysis of the NLSE shows that the instability curve $M^{\ast}(κ)$ vs. $κ$ lies below the two curves found by Derrick's theorem and the 4CC approximation. In the absence of the external potential, $κ=1$ demarcates the separation between the blowup regime and the stable regime. In this 4CC approximation, for $κ<1$, when the mass is above the critical mass for the translational instability, quite complicated motions of the collective coordinates are possible. Energy conservation prevents the blowup of the solution as well as confines the center of the solution to a finite spatial domain. We call this regime the "frustrated" blowup regime and give some illustrations. In an appendix, we show how to extend these results to arbitrary initial ground state solution data and arbitrary spatial dimension $d$.