论文标题

二元性面对面设置的交互动力学概率模型

A Probabilistic Model Of Interaction Dynamics for Dyadic Face-to-Face Settings

论文作者

Wang, Renke, Nwogu, Ifeoma

论文摘要

人类之间的自然对话通常涉及大量的非语言细微差别表达式,在整个对话过程中都在关键时段显示。理解并能够建模这些复杂的互动对于在虚拟世界或物理世界中建立现实的人类代理交流至关重要。随着社会机器人和智能化身的流行和效用,能够在整个对话中实际建模并产生这些动态表达是至关重要的。我们开发了一个概率模型,以在面对面的设置中捕获参与者对之间的相互作用动力学,从而可以编码对话者之间的同步表达式。然后,在预测一个代理的未来动力学时,该相互作用的编码将用于影响生成,以另一个人的当前动力为条件。火焰功能是从包含受试者之间自然对话的视频中提取的,以训练我们的交互模型。我们通过定量指标和定性指标成功地评估了我们提出的模型的功效,并表明它成功捕获了一对相互作用的二元组的动力学。我们还使用从未见过的父母侵入数据集的模型来测试模型,该数据集由二元组之间的两种不同模式的通信模式组成,并证明我们的模型基于它们的交互动力学在模式之间成功地描绘了这种模式。

Natural conversations between humans often involve a large number of non-verbal nuanced expressions, displayed at key times throughout the conversation. Understanding and being able to model these complex interactions is essential for creating realistic human-agent communication, whether in the virtual or physical world. As social robots and intelligent avatars emerge in popularity and utility, being able to realistically model and generate these dynamic expressions throughout conversations is critical. We develop a probabilistic model to capture the interaction dynamics between pairs of participants in a face-to-face setting, allowing for the encoding of synchronous expressions between the interlocutors. This interaction encoding is then used to influence the generation when predicting one agent's future dynamics, conditioned on the other's current dynamics. FLAME features are extracted from videos containing natural conversations between subjects to train our interaction model. We successfully assess the efficacy of our proposed model via quantitative metrics and qualitative metrics, and show that it successfully captures the dynamics of a pair of interacting dyads. We also test the model with a never-before-seen parent-infant dataset comprising of two different modes of communication between the dyads, and show that our model successfully delineates between the modes, based on their interacting dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源