论文标题
部分可观测时空混沌系统的无模型预测
PowerDuck: A GOOSE Data Set of Cyberattacks in Substations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Power grids worldwide are increasingly victims of cyberattacks, where attackers can cause immense damage to critical infrastructure. The growing digitalization and networking in power grids combined with insufficient protection against cyberattacks further exacerbate this trend. Hence, security engineers and researchers must counter these new risks by continuously improving security measures. Data sets of real network traffic during cyberattacks play a decisive role in analyzing and understanding such attacks. Therefore, this paper presents PowerDuck, a publicly available security data set containing network traces of GOOSE communication in a physical substation testbed. The data set includes recordings of various scenarios with and without the presence of attacks. Furthermore, all network packets originating from the attacker are clearly labeled to facilitate their identification. We thus envision PowerDuck improving and complementing existing data sets of substations, which are often generated synthetically, thus enhancing the security of power grids.