论文标题
部分可观测时空混沌系统的无模型预测
Nonlinear recombinations and generalized random transpositions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study a nonlinear recombination model from population genetics as a combinatorial version of the Kac-Boltzmann equation from kinetic theory. Following Kac's approach, the nonlinear model is approximated by a mean field linear evolution with a large number of particles. In our setting, the latter takes the form of a generalized random transposition dynamics. Our main results establish a uniform in time propagation of chaos with quantitative bounds, and a tight entropy production estimate for the generalized random transpositions, which holds uniformly in the number of particles. As a byproduct of our analysis we obtain sharp estimates on the speed of convergence to stationarity for the nonlinear equation, both in terms of relative entropy and total variation norm.