论文标题

在天体物理环境中重新访问Tio $ _2 $纳米群的基本特性作为凝结种子

Revisiting fundamental properties of TiO$_2$ nanoclusters as condensation seeds in astrophysical environments

论文作者

Sindel, J. P., Gobrecht, D., Helling, Ch., Decin, L.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The formation of inorganic cloud particles takes place in several atmospheric environments including those of warm, hot, rocky and gaseous exoplanets, brown dwarfs, and AGB stars. The cloud particle formation needs to be triggered by the in-situ formation of condensation seeds since it can not be assumed that such condensation seeds preexist in these chemically complex gas-phase environments. We aim to develop a methodology to calculate the thermochemical properties of clusters as key inputs to model the formation of condensation nuclei in gases of changing chemical composition. TiO$_2$ is used as benchmark species for cluster sizes N = 1 - 15. We create 90000 candidate geometries, for cluster sizes N = 3 - 15. We employ a hierarchical optimisation approach, consisting of a force field description, density functional based tight binding (DFTB) and all-electron density functional theory (DFT) to obtain accurate energies and thermochemical properties for the clusters. We find B3LYP/cc-pVTZ including Grimmes empirical dispersion to perform most accurately with respect to experimentally derived thermochemical properties of the TiO$_2$ molecule. We present a hitherto unreported global minimum candidate for size N = 13. The DFT derived thermochemical cluster data are used to evaluate the nucleation rates for a given temperature-pressure profile of a model hot Jupiter atmosphere. We find that with the updated and refined cluster data, nucleation becomes unfeasible at slightly lower temperatures, raising the lower boundary for seed formation in the atmosphere. The approach presented in this paper allows to find stable isomers for small (TiO$_2$)$_N$ clusters. The choice of functional and basis set for the all-electron DFT calculations have a measurable impact on the resulting surface tension and nucleation rate and the updated thermochemical data is recommended for future considerations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源